
CALCULATING A DERIVATIVE
Derivative from sum, product and quotient
	If each of the functions  and  has a derivative in point ,then the 
 и sum, difference, product и quotient of the functions  and  (in the case of a quotient it should be assumed that ), they also have a derivative in the point  where the formulas apply:











Example1.  СBy applying the rules mentioned above, we are now left with the possibility to calculate the derivative without any effort of any polynomial.. Using the following:   

For example, for the following polynomial we have: 
 
 
 
 
 
 

Example2. By applying the rules mentioned above and the derivatives of some elementary functions, for the derivative of the   we have:
 

Example3.  By applying the rule for a derivative from a quotient, for the derivative of the function   we have:


Derivative from a complex function
	If the function  has a derivative in a fixed pont  , and function  has a derivative in the point  , then the function  has a derivative in the point  while the following formula applies        



Example4.   In the case of the function , by adding the  ,  we get that 
Similar for the function  , by adding , we get that 
Example 5. Calculate the derivative of the function 
The given function we can write it in the following form   , or  , where  and we get:
  

Derivative from a inverse function
	For the function  exists an inverse function  in the surroundings of the point . If we have an existing derivative of the function  in point  and while  ,then a derivative exists of the inverse function  in the point  and is equal to  .



Example6. The function    is inverse to the function  .
   
Example7.  Function   is inverse to the function  , .
   
In the points  и   we can only discuss for a left, or right derivative of this function.
Derivative from a implicitly defined function
Lets assume that the values of two variables  and   are tied with the equation,  .
If the function   defined on a interval  is such by replacing of   with   во    we get the identity of  , we say that   is an implicit function set with the equation .
Example 8. We have the following function .
If we get a derivative from both sides of the equation of , assuming that  is a function of  , we get the following:  
 
from which it follows that
 .
Example9.  We have the function .
If we get a derivative from both sides of the equation of , assuming that  is a function of  , we get the following:  
 
from which it follows that
 .

Derivative from a parametrically defined function 
We have the following equations 
                                                                            (1)
Where  takes values in the . For every value of  the values  и  comply . If the obtained values   и    we interpret  tem as coordinates in the coordinate plane  , then for every value of   corresponds  a point in the plane. By that way, when   changes from  to  , we get a curve in the plane. The equations(1) are called paсе нарекуваат parametric equations of that curve,  is called a  parameter, and the way of setting the curve is called а parametric.
If we assume that the function  has an inverse function, ,
then  is a function of  , or 
 .                                                                                     (2)
That way the equations (1) define a function  from   , for which we say that its a given in a parameter way. The direct dependence  is obtained by eliminating the parameter  from equations (1).
Lets find a derivative from the function  of  given in a parameter way with the equations (1). We will assume that the functions  and   have a derivative in each inner point of the segment  , while the function   has an inverse  of the segment at hand. Then the function   defined with parameter equations (1) can be looked as a complex function.

where  changes in the segmentс. Following the rule for a derivative from a complex function we find that:
 .
Based on the derivative of the inverse function we have  .
By the last equation we get 
[bookmark: _GoBack]  ,   or     .
Example10. Function  from  is given with the parametric equations:
 
           .
For the arbitrary value of parameter произволна  of the given segment we have the following:
 .
TASKS
Find the derivative of the functions, if:


1.                                        


2.                            


3.                         


4.                                                


5.                                                
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